Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

John Nicolson Low, ${ }^{\text {a }} \boldsymbol{*} \boldsymbol{\dagger}$ Justo Cobo, ${ }^{\text {b }}$ Manuel Nogueras, ${ }^{\text {b }}$ Adolfo Sánchez, ${ }^{\text {b }}$ Emerson Rengifo ${ }^{c}$ and Rodrigo Abonia ${ }^{c}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\text {c }}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA25360 Cali, Colombia
† Postal address: Department of Electrical Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland.

Correspondence e-mail:
jnlow111@hotmail.com

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.135$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-tert-Butyl-5-[(4-methoxybenzylidene)amino]-1-phenylpyrazole

The title compound, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$, has a supramolecular structure which is determined by a very weak C $\mathrm{H} \cdots \mathrm{O}$ (methoxy) hydrogen bond and a similarly weak $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interaction.

Comment

The title compound, (I), was prepared as an intermediate in the preparation of new fused-pyrazole derivatives (see Scheme below).

There are no unusual bonds or angles (Table 1) in the pyrazole ring, which is planar within experimental error. [Note that the atom numbering used for the title molecule does not follow normal IUPAC conventions.]

The mean plane of the phenyl ring attached to N 2 is tilted at $26.70(9)^{\circ}$ to the mean plane of the pyrazole ring. The torsion angles involving the methoxy carbon, C341, show that the

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
methoxy group is almost, but not quite, coplanar with the phenyl ring to which it is attached [C33-C34-O34-C341 = $\left.5.1(2)^{\circ}\right]$; there is a tendency for methoxy groups to be coplanar with the phenyl ring in anisoles [see Domiano et al. (1979)]

The supramolecular structure is determined by two very weak interactions involving phenyl H atoms (Table 2). The $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 34$ bond links the molecules at (x, y, z) and ($1-x,-y,-z$) into a head-to-tail centrosymmetric $R_{2}^{2}(20)$ dimer (Bernstein et al., 1995), formed about the centre of symmetry at $\left(\frac{1}{2}, 0,0\right)$ (Fig. 2). These dimers are then linked by a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction into a ribbon which runs parallel to the b axis; this is formed by the interaction $\mathrm{C} 25-\mathrm{H} 25 \cdots$ centroid of the phenyl ring attached to N2 (Fig. 3).

Examination of the structure with PLATON (Spek, 2002) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

A mixture of 5 -amino-3-(tert-butyl)-1-phenyl-1H-pyrazole $(0.11 \mathrm{~g}$, $0.512 \mathrm{mmol}), p$-methoxybenzaldehyde $(0.07 \mathrm{~g}, 0.514 \mathrm{mmol})$ and ethanol (10 ml) was heated to reflux for 5 min . After cooling, the pale yellow solid which formed was filtered off and washed with ethanol (85% yield; m.p. 394 K). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): 1.39 $(9 \mathrm{H}, s), 3.85(3 \mathrm{H}, s), 6.20(1 \mathrm{H}, s), 6.95(2 \mathrm{H}, d, J=9.0 \mathrm{~Hz}), 7.26(1 \mathrm{H}, t, J$ $=9.0 \mathrm{~Hz}), 7.42(2 \mathrm{H}, b r t), 7.79(4 \mathrm{H}, b r d), 8.58(1 \mathrm{H}, s, \mathrm{~N}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): 30.4, $32.5,55.4,89.7,114.3,124.1$, 126.1, 128.4, 129.0, 130.8, 139.9, 150.4, $159.2(\mathrm{~N}=\mathrm{CH}), 162.1,162.6$; MS (70 eV): m/e (\%) 333 (95), 318 (73), 291 (44), 77 (100), 51 (48), 41 (77). Crystals suitable for single-crystal X-ray diffraction were grown from a solution in ethanol.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=333.42$
Monoclinic, $P 2_{1} / c$
$a=10.0744(3) \AA$
$b=6.2583(2) \AA$
$c=28.9244(9) \AA$
$\beta=101.0410(13){ }^{\circ}$
$V=1789.89(10) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.970, T_{\text {max }}=0.992$
9156 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.135$
$S=1.04$
3762 reflections
230 parameters
H-atom parameters constrained
$D_{x}=1.237 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3762 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120$ (1) K
Block, brown
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

> 3762 independent reflections 2710 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.056$
> $\theta_{\max }=27.5^{\circ}$
> $h=-11 \rightarrow 13$
> $k=-8 \rightarrow 4$
> $l=-37 \rightarrow 31$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0575 P)^{2}\right.} \\
&+0.7158 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
A view of the the $R_{2}^{2}(20)$ centrosymmetric dimer.

Figure 3
Stereoview showing the dimers linked by the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. Methyl H atoms have been omitted for clarity.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

N1-C5	$1.330(2)$	$\mathrm{C} 3-\mathrm{N} 3$	$1.394(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.369(2)$	$\mathrm{N} 3-\mathrm{C} 37$	$1.283(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.367(2)$	$\mathrm{C} 37-\mathrm{C} 31$	$1.455(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.375(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.404(2)$
C5-N1-N2	$105.23(14)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$105.61(16)$
C3-N2-N1	$111.23(13)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$111.28(15)$
N2-C3-C4	$106.64(15)$		
C3-N2-C21-C22	$-25.9(3)$	$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 37-\mathrm{C} 31$	$173.83(15)$
N1-N2-C21-C22	$151.18(16)$	$\mathrm{N} 3-\mathrm{C} 37-\mathrm{C} 31-\mathrm{C} 32$	$-11.9(3)$
C3-N2-C21-C26	$155.84(17)$	$\mathrm{N} 3-\mathrm{C} 37-\mathrm{C} 31-\mathrm{C} 36$	$170.00(16)$
N1-N2-C21-C26	$-27.0(2)$	$\mathrm{C} 33-\mathrm{C} 34-\mathrm{O} 34-\mathrm{C} 341$	$5.1(2)$
N2-C3-N3-C37	$146.59(16)$	$\mathrm{C} 35-\mathrm{C} 34-\mathrm{O} 34-\mathrm{C} 341$	$-175.37(15)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 37$	$-40.1(3)$		

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).
$C g 1$ is the centroid of the C21-C26 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{A}} \mathrm{i}^{\mathrm{i}}$	0.95	2.59	$3.487(2)$	157
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.95	2.73	$3.472(2)$	135

Symmetry codes: (i) $1-x,-y,-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.98 \AA$. The data shows a completness of 0.92 at θ of 27.50° and 0.933 at θ of 25.00°; examination of the data shows that data at high θ values are very weak or absent. The methyl atoms of the tert-butyl group, particularly C54, have higher displacement parameters than the other atoms in the structure, indicating a degree of rotational disorder in this group.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2002); software used to
prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton; the authors thank the staff for all their help and advice. MN, AS and JC thank the Ministerio de Educación Cultura y Deportes, (Programa de Cooperación con Iberoamérica, AECI) of Spain for financial support for this work. RA thanks COLCIENCIAS and Universidad del Valle for financial support.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Domiano, P., Nardelli, M., Balsamo, A., Macchia, B. \& Macchia, F. (1979). Acta Cryst. B35, 1363-1372.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. Version of December 2002. University of Utrecht, The Netherlands.

